Monoprice 3D Printer Upgrades – Power Supply Cooling Risers

March 12, 2017 in Monoprice select mini 3D printer, Tool builds improvements and repairs

MP select Mini iiip 3D printer

One of the known problems with the MP Select Mini 3D Printer is that the power supplies burn out.  The Monoprice Select Mini IIIP 3D printer uses  a 12V 10A  external power supply that plugs into the back of the printer.  If you leave these on carpet, cover them with anything, or just get unlucky you can burn out the power supply pretty easily.   If that happens, I suggest buying a bigger 12V power supply rather than a direct replacement.

The printer in preheat mode with both the bed and the nozzle heating up is pushing this switching power supply pretty hard.  It gets hot to the touch from the load in this use condition.  Any lack of airflow/circulation around it will cause the power supply to die.  Someone at work put a stack of papers on the first one I purchased and this caused the power supply burn up and fail.  My personal power supply on the mini at home lives on carpet and needs a riser to let air circulate to keep it cool so it will live a long happy life.

3D printer power supply cooling

I had my DJ laptop power supply burn out years ago after it ran too hot for too long. For the very expensive replacement I made a 3D printed cooling riser stand for the power supply that worked awesome to keep it cooler.   I made one to fit the Monoprice 3D printer’s power supply.  You can see it above, printed in PLA by the Monoprice mini 3D Printer.   I love that this tiny printer just bangs out prints without fail time and time again.

 

You can download the STL file to print your own Power Supply Cooling Riser on Pinshape at this link:  https://pinshape.com/items/33164-3d-printed-monoprice-mini-3d-printer-power-supply-cooling-riser

    

These risers are a fast and quick way to keep your powersupply cool.  If you want you can use some glue or VHB and stick them to a flat surface.  They fit snugly so you shouldn’t have issue with them falling off/over unless you move your printer around a lot.       Check out my other upgrades for this great little printer on this blog.  I have several more upgrades to share when I can find time to write/upload.    If you print out one of these, I would love to see a picture of yours in action.  Makes me super happy and keeps me motivated to make time to share things when I learn that someone finds some benefit of my projects.

 

Monoprice Select Mini 3D Printer Upgrades – Improved Knob / Button

February 26, 2017 in Monoprice select mini 3D printer, Tool builds improvements and repairs

MP select mini 3D printer knob

The first upgrade to the Monoprice Select Mini 3D printer has to be replacing the god awful input knob/button that came on the printer.  This printer uses a standard rotary encoder with push button for it’s single user input.  The UX is pretty miserable with the OEM knob/button.  I designed a nice SLA printable version, and have included an FDM version as well for those without access to higher quality 3D printing options on printers like Objets or Formlabs.   I printed mine in Formlabs Tough resin, because with the led lighting this translucent material looks magical on the printer.

3D printer upgrade MP select Mini knob

 

This button upgrade is available for download for free on Pinshape here at this link:  Link to Monoprice MP select Mini 3D printer upgraded button knob.  Installation required me to bend some stiff wire with short 90 degree ends to get under the original button and pull it off. It takes a bit of force to remove the OEM knob/button but it comes off with some careful pulling/wiggling.

 

MP select Mini 3D printer upgrade button knob

I hope you print one of these for yourself and it makes your mini 3D printer experience more enjoyable.

 

Making a DIY Printed Circuit Board (PCB) vise

August 20, 2015 in and cool stuff., RepRap 3D Printer, Tool builds improvements and repairs

Printed Circuit Board holder

I have needed a printed circuit board vise of some sort for a while and have not found a lot of good affordable options that I liked.  I had an old Panavise style hobby vise kicking around the shop for years and I recently decided it was the perfect solution for this project.   I used two different types of 3D printers to make the parts for this project.  My printer, an FDM machine I built myself was used to print up the ABS stronger quick attach mount to attach the vise to my electronics bench.   I used a Formlabs Form1+ SLS 3D Printer to print the PCB holders/grips in a tough 3D printable material that was launched a few months back, appropriately called “Tough”.

 Printed Circuit board Clamping fixtures SLA printed -3321        Printed Circuit board Clamping fixtures SLA printed -3318

The backbone of this project is an old wide opening Panavise.  These were a staple of the hobby world.  I routinely see them for <$1 at flea markets and yard sales.  I had this one kicking around in my metalworking shop for ages.   I must have  picked up somewhere for $0.25 as it still had the yard sale sticker on it.   These originally came with a variety of low quality rubber “grips” and some sort of mount, often a poor quality plastic suction cup thing meant to quickly attach to your presumably smooth workbench.  I gave away a handful of these to fellow hobbyists a couple years ago but this one survived the culling, and I’m glad it did.

Formlabs Touch SLA Printed grips

All of my previous posts on 3D printing used my machine.  I now have available to me one of the other types of 3D printing technologies, SLA.   This type of printer grows parts out of liquid resin, typically with a laser or projector system.  I’ve been using a Form1+ model SLA printer.  It’s a pretty fantastic machine with amazing resolution and detail.  There are also some great materials with different properties that I can not print on my Zac built FDM type 3D printer.   These include the Tough material I used to make the PCB grips for the old panavise clamp I wanted to put to good use for this project.  Formlabs tough resin is, well tough.   Meaning it’s not brittle like may SLA resins.  It also has a good feel to it and excellent mechanical properties for things like vise jaws.  The vise jaws are shown on the build platform after printing.  These are designed to slip over the metal “jaws” of the old Panavise I am using.  If you want to print out your own set of these jaws, circuit board vise jaws for panavise vice clamps.

 

FDM printed Vise quick attach mount

The other piece of the puzzle I needed to make this project work was a way to quickly attach and detach this vise from my electronics bench.  I do not plan to use this vise all the time.   It would be in my way a lot, meaning it needed a quick attach system.  I quickly drew one up and printed it out on my personal 3D printer.   I print in ABS and for this application this material is perfect.   Thequick attach vise mount for workbench.

 

081715  PCB holder 3d printed vise inserts-3551      081715  PCB holder 3d printed vise inserts-3550

Both parts of the quick attach vise mount printed out in a few hours.   The mounting bolt on the panavise clamp is threaded 3/8-24.  I ended up using a bolt and a nut to tighten the clamp to the mount.

081715  PCB holder 3d printed vise inserts-3553            081715  PCB holder 3d printed vise inserts-3554

As you can see the two parts interlock.  there is a taper that locks the vise in place, but comes free with a quick tap upwards from underneath.

Panavise quick attach workbench PCB vise

Testing the location on the bench.  Can you see what’s wrong with my design.  I had a home ‘doh! moment when I saw what I did.

081715  PCB holder 3d printed vise inserts-3556      Printed Circuit Board holder

081715  PCB holder 3d printed vise inserts-3557

The thing I did wrong, is design the quick attach mount with the upper screws at the top.  The problem is that this design screws in edgewise to the plywood top of my workbench.  It is never a great idea to screw into the edge of plywood and expect it to hold.  This application is low force so I think I will be ok.  A better design would have the upper screw mounts 0.75″ lower, I will change my part files for others who want to use my design for themselves have a better design.

Printed Circuit Board holder

081715  PCB holder 3d printed vise inserts-3558

081715  PCB holder 3d printed vise inserts-3561

The above pics shows the vice holding an audio amp circuit board I needed to do some testing on.   As you can see the new PCB vise works great.  It can also hold smaller circuit boards vertically with the middle groove I added in my third and final iteration on the design.  I have used this great circuit board vise a handful of times already and I love it.

More on my other PCB holding and testing stations experiences in a future post when I have time.

The greatest electrical tool of all time, the LCR Tester!

April 20, 2015 in RepRap 3D Printer, Tool builds improvements and repairs

Electrical component tester

This little guy is the greatest thing to happen to electrical projects since the invention of the hammer.  If you are like me, you have a million components on your bench or bins for electronic repairs, upgrades, and circuit design.  I stumbled across this tester on a forum and quickly ordered myself one from ebay.  You can find it by searching for LCR tester.  Why is it the best tool to add to your collection?  Well let me tell you….

measure resistors     Capacitor tester

First, it measures values of resistors and Capacitors (including ESR) with the push of a button.

 

Capacitor tester

It also does diodes…

Electrical component tester     Electrical repairs tester

But BEST OF ALL!  It tells you if  transistors, MOSfets, and the like are good.  But also tells you the values you need to work with these components in your projects.   This is why it’s the best thing since the hammer.  I have tons of components I’ve pulled from boards to use in projects, but finding data sheets etc is a pain.  This makes life easy, especially for breadboard proof of concept and educational circuit design experiments.

The LCR tester comes as a loose board, and is very cheap. I think mine was $15 shipped.  It runs on a 9V battery, and I printed a case on my 3D printer. I’ll find the model and share it here later.  This little device belongs on everyone’s electrical project bench (or toolbox).

 

PROJECT SNEAK PEAK:

LCR TEster pics-2780 LCR TEster pics-2782 LCR TEster pics-2783

 

Partially so I can find the driver board specs in the future, but I’ve been playing with Lasers for the last 6-9 months working on some different types of rapid prototyping machines.  More to follow but the sneak peak photos show some of my test parts as a tease.