Upgrading shop lights with 12V DC LEDs using 3528/5050/5630 Flexible Light Strips

January 20, 2015 in around the house repairs and DIY fixes, Tool builds improvements and repairs

 

Shop light using 12V DC LEDs using 3528/5050/5630 Flexible Light Strips   We all have them in our workshops, the cheap dual 48″ fluorescent tube shop lamps or “shop-lite”.  The negatives of these low cost lamps being winter temperatures making them either not start, or flicker like crazy.   I decided to try an upgrade using 12V DC LEDs using 3528/5050/5630 Flexible Light Strips.  LED’s start instantly, don’t flicker even at very low temps, and my shop light conversion to LED’s decreases the energy consumed to about 20% that of the fluorescent tubes making it an environmentally beneficial green upgrade.

12V DC LEDs using 3528/5050/5630 Flexible Light Strips    12V DC LEDs using 3528/5050/5630 Flexible Light Strips

   Originally inspired by the number of dead tubes and starting ballasts in many of my shop lights I went to my local Home Depot and Lowes to look at replacing and repairing these lights.  However the price of both the tubes and shop lights has increased greatly since I last purchased some.  Additionally there’s a buck a tube fee to dispose of the tubes now.  I decided I could do it cheaper and better with LED lighting, but once again the ones I could purchase were quite pricey at ~$40 a piece.   I had used some of the 3528 led light strip (about $6 for 5 meters) inside my 3D printer enclosure in the past and it worked amazingly well.  I also have a plethora of free 12V dc power supplies in my parts bins making a light conversion to LED cost me about $3.  Seemed like a win win situation, I’d use up some parts on my shelves, save money, and make a lamp that was considerably greener then the fluorescentversion making me feel better about my lowered impact on the environment.

12V DC LEDs using 3528/5050/5630 Flexible Light Strips     12V DC LEDs using 3528/5050/5630 Flexible Light Strips

   A pretty easy project, it starts with disassembling the old light and removing the internal electronics.  Open up the light, pull out the parts, and remove them from the lamp.  This is one of the better shop lites I have. It has an actual electronic ballast unit, and it still worked so I removed it carefully and am saving it for a future project or repair.  Some of these lights have really bad, poorly made ballast set ups that are scary when you see how unsafe the design is inside.

Shop light with 12V DC LEDs using 3528/5050/5630 Flexible Light Strips     Shop light using 12V DC LEDs using 3528/5050/5630 Flexible Light Strips

  We are just using the body or sheet metal “shell” for our light conversion.  I like the shop light look, and the sheet metal has angles that will help spread out the LED lighting, which radiates out at a fixed angle from a point source rather then in a full 360 degrees like the tube.   Make sure you clean the metal well. Even after using some Lysol scrubbing wipes to clean them, I found an alcohol wipe still removed some grease from the surfaces.  We want the 3M adhesive to have an oil free clean surface with which to bond when we apply our light strips to the frame.

Shop light using 12V DC LEDs using 3528/5050/5630 Flexible Light Strips

   There are three common varieties of these LED light strips available at low cost on Ebay and other supply websites.  They come in adhesive strip using 3528/5050/5630 LEDS.  Additionally you can buy them in waterproof sealed strips for additional cost but I did not need them to be sealed.  Above you see one 5 meter roll of each strip. They are very easy to work with. you cut them to length where you see the two copper tabs.  Then you can easily solder strips together by connecting the end copper solder tabs.  The different numbers refer to the actual dimensions of the LEDs. I’ll do a second post on  what the differences are, as well as an evaluation of which one makes for the best shop light.

Shop light using 12V DC LEDs using 3528/5050/5630 Flexible Light Strips

Application of the LED light strips to the shop lamp is very easy.  Simply cut to length, being careful to cut in the middle of the small copper solder tab space.  They have a cutting line for you to follow (you can see it on the left side of the right image below).  Remove the adhesive backing strip and carefully place it onto your lamp.  Be careful, the LED’s themselves are sharp, I use a bit of cloth folded up to apply pressure to the strip as I stick it down to save my fingers. Start on one end and kinda roll it down onto the metal of the shop light.  Sometimes the copper tape gets kinked a bit from being on the roll.  You want to maximize your adhesion by pulling and rolling out any bubbles or kinks as you work along the length sticking it down from one end to the other.

Shop light using 12V DC LEDs using 3528/5050/5630 Flexible Light Strips    Shop light using 12V DC LEDs using 3528/5050/5630 Flexible Light Strips

The strips are manufactured in shorter lengths and then soldered together connecting into long lengths.  When I turned this particular section on, as you can see above, it did not light up all everywhere.  The solder joint from manufacture had cracked and broken during the rolling or unrolling.  If this happens, a quick touch up from a hot solder iron to the soldered tab (above right) will reflow the solder restoring a good electrical connection.

LED Light Strip Shop Light-1960

Connect up your 12V power supply.  I’m using the 12V DC 2A kind that come with many electronics. I have a dozen or so in my parts bin.  I pick these up for project use whenever I can.   I did two different methods on my light conversion.  One where I used the original shop light’s power cord. The other where I just directly soldered in the power supply cord to the light.  Both are functionally identical.  I can’t advise you as to which is better.  For my purposes the decision was based on the shape/size of whichever power supply I was using.  If it fit in the shop light body I kept the original cord.  If not, I soldered the power supply wires directly to the strips.

LED Light Strip Shop Light-1959

When soldering the ends together, make sure you keep the + to the + and the negative to the negative.  LED’s are diodes, and as such only flow current in one direction.  If a whole strip isn’t working, likely you have the positive and negative backwards.  I also put some Kapton (polyimide) tape underneath where the strips ended and I soldered. This was to ensure no electrical shorting to the light frame.  You could just as easily use a piece of electrical tape but you want to make sure to add this safety feature to prevent any risk of electrical shock or shorting.

Shop light using 12V DC LEDs using 3528/5050/5630 Flexible Light Strips

Testing the completed light is easy, plug it in.  These lights are  up in my shop now and working great. I’ll write a second post soon comparing the different LED’s  ie 3528 vs 5050 vs 5630 in this application.  I will share which one I feel is makes the best shop light, as there is a clear and away winner out of these three.  Hope you enjoyed this quick post, learned something, and as always don’t follow online projects verbatim blindly, think, be safe, and be smart when working on your own projects.

My Custom Designed 25W RMS ipod/mp3 Player Speaker Sound System

September 3, 2014 in and cool stuff., Arts Crafts and other, Woodworking and Furniture

mp3 speaker dock sound system

I’m big on recycling and feel the highest form of recycling is to re-purpose and reuse things that would otherwise be discarded.  This project is built largely from re-purposed recycled components. It’s fabrication used 3d printing, cnc machining, electronics, and woodworking.  The inspiration came about when I was visiting my buddy and he asked me to help him move a giant older DLP television out of his basement to the curb.  Realizing it was going to the dump, I asked if I could take a few useful parts from it.  Originally planning to only grab the connector plate off  the back that I needed for another project, we ended up taking the TV apart and I recovered the power supply unit, speakers, some circuit boards and the connectors I was originally after.  Research online showed that the speakers were really quite nice units, fully shielded with decent Theile/Small specifications.  There was an onboard self contained amplifier chip in the TDA family that was easily desoldered and built into a small stand alone audio amp.   I had been wanting a small nice powered speaker unit for some time and  I now had all the parts I needed to build myself one.

Desktop Active Speakers -0811      Desktop Active Speakers -0810

I went with a slightly retro design for this unit.   I didn’t really reference anything outside of some basics, like the golden ratio and standard speaker enclosure practices.  I’m very happy with how it looks and sounds.  I think it’s very attractive, fitting well with the rest of my things.

 

Maple desktop powered speaker system - insides

Before buttoning it all up there was several rounds of testing out the electronics, switches, power supply, etc to ensure everything worked correctly.  In the end I removed the screw terminals on the PCB and soldered the wires directly worrying that they might come loose with vibration from the music.

 

Desktop Active Speakers -0635        Desktop Active Speakers -0751

The amplifier housing on the left is 3d printed in ABS, as is the power supply housing on the right in the above photo.  I went with a machined metal vent/cover plate milled on my converted CNC machine.  I’m a big fan of Krylon’s ultra Flat Black paint and used this on the back cover for a nice matte black finish.

 

Desktop Active Speakers -0749

The power supply is a standard unit I kept from some piece of electronics that was out dated.  A few minor modifications, remote plug, switched line inputs and an active LED on the front panel all were done the power supply.   Then I designed and 3D printed a case to mount it safely into the speaker unit.

 

Maple desktop powered speaker system

The lighter wood for the outer bodycame from a storm downed maple that I milled into lumber three or so summers ago and dried.   The front and back boards came from a log off a riverland maple my lifelong friend’s father let me take when he cleared some off his property a couple years ago.  Even the front plate is machined from aluminum recycled from an old PC case.

 

Desktop Active Speakers -0814

The finished speaker unit sounds amazing.  I missed a few pictures in the build process. The inside is fully sealed with a divider keeping the two chambers separate.  I also used some polyester batting as internal dampening to increase the effective internal  “volume” of the speaker enclosures.  This unit survived a 48 hrs continuous stress test without any issues.  I love how it looks as well as how good it sounds!

Diode replacement on Lincoln Weld-Pak 100 Welder Repair

August 13, 2014 in around the house repairs and DIY fixes, Tool builds improvements and repairs

welder diode replacement     While working on another project, a diode shorted out in my Lincoln Electric Welder,  a Weld-Pak 100.   I needed to replace this diode but finding information online was challenging.  To help others, and myself in the future,  I am sharing data and specs for the replacement parts I ordered to fix my Lincoln Welder.   I knew the issue was a diode and not a transformer short because it still  made an arc (very poorly), but became a buzz box with the right sound without throwing the internal breaker.  A short in the transformer would likely trip the breaker quickly and not continue to generate an arc.    Opening up the weld-pak 100 and testing the diodes with my digital multimeter with it’s diode setting quickly identified the problem diode.  To do this you have to first remove the diodes from the aluminum plate that acts as their heat sink (or at least the output wires from the plates).

****This project, like many projects by Zac is not a task for the unskilled or those lacking knowledge. Electricity is dangerous!  It can and will kill you!***

If you don’t know exactly what you are doing to be safe, do NOT attempt any kind of repair like this.   Always unplug, and check (verify with a meter safely) that any and all capacitors are discharged fully before testing or working on any electronic device.  I’m sharing this info, primarily to have the data easily accessible should I need to replace or repair my welder again in the future.

welder diode replacement

The Lincoln Weld-Pak 100 diode replacement is a huge PITA.  There is not one smidge of extra wire inside to allow things to move freely making it challenging to work on.  In addition, the transformers are made from wide aluminum strips, and it’s pretty much impossible to move this aluminum strip in the wide direction.   The trick I found to getting the diodes out (they are attached to the rectangular aluminum plates on the left bottom of the above photo) is to undo all of the bolts before trying to get at them.

welder diode replacement Removing what passes for the heat sink (aluminum plate pictured above) from the welder is problematic as well.  Working on this welder is not easy because there’s not a lot of wiggle room on any of the wires.  From a design standpoint this makes sense, least amount of wire will result in the lowest losses.   To get the heat sink plates out use a thin screw driver to pry the inside plastic  clamp and pull the plate towards the front and then up.  I broke off one of the little tabs that locks the plate in place due to prying a bit too much. Thankfully there are two on each plate.

welder diode replacement Above is a side by side photo showing the original diode on the left and the replacements I ordered on the right.  The original rectifier diodes used in the bridge rectifier assembly to generate the DC current used for welding are International Rectofier parts:  IR M9661 40RU (reverse configuration) and IR M9661 40U.  There are 4 diodes in total, and 2 of each part number making up the bridge rectifier assembly.  One of mine was blown, being shorted out such that it allowed electricity to flow in both directions.  These diodes are rated at 70A and 300V based on what I could find on the net, in welder forums and user groups.  The original replacement parts are available from Lincoln and welding supply companies for about $24-30 each.   While that is an option, most of the welder forums recommended replacing the diodes with higher voltage ratings as often they blow due to repeated voltage spikes during the welding process.   I decided to replace all 4 o the diodes in my Lincoln Weld-Pak 100 Welder.  I started my search for replacement parts at Digikey.com (my favorite supplier of electronic parts) but they do not stock higher power rectifier diodes.  I ended up finding what I needed at Newark.co. There were lots of options to choose from,  my choice might not be the best one. If you follow in my footsteps understand this fact.   I as not 100% certain the diode replacement would entirely fix my welder, as such I went with the cheap option.  I ordered two Solid State 85HFR120 and two of Solid State 85HF120 diodes from Newark.com with a total cost plus shipping of considerably less then one replacement OEM diode.   These diodes had the same form factor as the originals and are rated at 85 amps forward current and more importantly a much higher repetitive reverse voltage max of 1200V.

welder diode replacement

Above is the wiring diagram for the Lincoln Weld-Pak 100 Welder.  Thankfully it was inside the welder.  When I looked online I couldn’t find a wiring diagram for my Lincoln Electric Welder and thus I’m sharing it here.  Sometimes it is nice to find things like the circuit diagram for your Weld-Pak welder before you open it up.

welder diode replacement

In order to get the second aluminum plate heat sink out from the welder I had to completely remove the fan assembly.  The plates are supported as well as electrically isolated by the fan assembly so be sure to go careful and not break anything.  When you put it back you need to be very careful that everything is floating in air and no uninsulated parts are touching any other metal parts.    This welder uses air gap to electrically isolate some of the components.

*** Special note ***  DO NOT CUT THE WIRES TO THE DIODES!   There is no extra wire, you MUST DE-SOLDER the wires, and then put them through the new diodes for soldering!   Yes this is not easy, but trust me, if you cut them you will not get it back together without having to replace more things and take the entire welder apart.

welder diode replacement

Replacing the Diodes on the Weld-Pak 100 is pretty straight forward in theory.  Desolder the wires from the old parts, solder on to the new ones.  You may have to squish the wires  while hot with needle nose pliers to get them through the new diodes, or wiggle them in while the solder is melted (using tools not fingers, melted solder is hot).  With all of the diodes replaced you are ready to carefully reassemble the diodes and heat sink plates.  I’m not sure one way is easier then the other. I put the aluminum plates mostly in place but not fully.  This way I could wiggle things into place and then tightened down the nuts.   BE SURE TO USE HEAT SINK PASTE ON THE DIODES when mounting to the Aluminum plate.  I did not have torque specs on the diode nuts, I just made them tightly snug.  Enough so I was sure they wouldn’t come loose, but not tight enough to break anything.

welder diode replacement Once you have it all back together, be sure to check that you have nothing touching that is not supposed to be touching. I used a little bit of Kapton film to insulate the transformer “wire” strip on the off chance that something came in contact with it in the future.   I loosely layed the cover back on and did some test welding.  The welder worked marvelously. I suspect perhaps my diode was iffy for a while as I was once again getting that nice sizzle sound from mig welding.  I realized on hearing it I had not heard that sound quite right for some time.   The bead of weld my weldpak 100 layed down was perfect.  I’ve since welded quite a bit with the repaired welder and everything seems to be great having replaced the rectifier diodes on my Lincoln Weld-Pak 100 Welder.

If you found this post useful, let me know, leave a comment. It’s nice to hear someone found my post useful.

 

 

 

Diode replacement on Lincoln Weld-Pak 100 Welder Repair

August 13, 2014 in around the house repairs and DIY fixes, Tool builds improvements and repairs

welder diode replacement     While working on another project, a diode shorted out in my Lincoln Electric Welder,  a Weld-Pak 100.   I needed to replace this diode but finding information online was challenging.  To help others, and myself in the future,  I am sharing data and specs for the replacement parts I ordered to fix my Lincoln Welder.   I knew the issue was a diode and not a transformer short because it still  made an arc (very poorly), but became a buzz box with the right sound without throwing the internal breaker.  A short in the transformer would likely trip the breaker quickly and not continue to generate an arc.    Opening up the weld-pak 100 and testing the diodes with my digital multimeter with it’s diode setting quickly identified the problem diode.  To do this you have to first remove the diodes from the aluminum plate that acts as their heat sink (or at least the output wires from the plates).

****This project, like many projects by Zac is not a task for the unskilled or those lacking knowledge. Electricity is dangerous!  It can and will kill you!***

If you don’t know exactly what you are doing to be safe, do NOT attempt any kind of repair like this.   Always unplug, and check (verify with a meter safely) that any and all capacitors are discharged fully before testing or working on any electronic device.  I’m sharing this info, primarily to have the data easily accessible should I need to replace or repair my welder again in the future.

welder diode replacement

The Lincoln Weld-Pak 100 diode replacement is a huge PITA.  There is not one smidge of extra wire inside to allow things to move freely making it challenging to work on.  In addition, the transformers are made from wide aluminum strips, and it’s pretty much impossible to move this aluminum strip in the wide direction.   The trick I found to getting the diodes out (they are attached to the rectangular aluminum plates on the left bottom of the above photo) is to undo all of the bolts before trying to get at them.

welder diode replacement Removing what passes for the heat sink (aluminum plate pictured above) from the welder is problematic as well.  Working on this welder is not easy because there’s not a lot of wiggle room on any of the wires.  From a design standpoint this makes sense, least amount of wire will result in the lowest losses.   To get the heat sink plates out use a thin screw driver to pry the inside plastic  clamp and pull the plate towards the front and then up.  I broke off one of the little tabs that locks the plate in place due to prying a bit too much. Thankfully there are two on each plate.

welder diode replacement Above is a side by side photo showing the original diode on the left and the replacements I ordered on the right.  The original rectifier diodes used in the bridge rectifier assembly to generate the DC current used for welding are International Rectofier parts:  IR M9661 40RU (reverse configuration) and IR M9661 40U.  There are 4 diodes in total, and 2 of each part number making up the bridge rectifier assembly.  One of mine was blown, being shorted out such that it allowed electricity to flow in both directions.  These diodes are rated at 70A and 300V based on what I could find on the net, in welder forums and user groups.  The original replacement parts are available from Lincoln and welding supply companies for about $24-30 each.   While that is an option, most of the welder forums recommended replacing the diodes with higher voltage ratings as often they blow due to repeated voltage spikes during the welding process.   I decided to replace all 4 o the diodes in my Lincoln Weld-Pak 100 Welder.  I started my search for replacement parts at Digikey.com (my favorite supplier of electronic parts) but they do not stock higher power rectifier diodes.  I ended up finding what I needed at Newark.co. There were lots of options to choose from,  my choice might not be the best one. If you follow in my footsteps understand this fact.   I as not 100% certain the diode replacement would entirely fix my welder, as such I went with the cheap option.  I ordered two Solid State 85HFR120 and two of Solid State 85HF120 diodes from Newark.com with a total cost plus shipping of considerably less then one replacement OEM diode.   These diodes had the same form factor as the originals and are rated at 85 amps forward current and more importantly a much higher repetitive reverse voltage max of 1200V.

welder diode replacement

Above is the wiring diagram for the Lincoln Weld-Pak 100 Welder.  Thankfully it was inside the welder.  When I looked online I couldn’t find a wiring diagram for my Lincoln Electric Welder and thus I’m sharing it here.  Sometimes it is nice to find things like the circuit diagram for your Weld-Pak welder before you open it up.

welder diode replacement

In order to get the second aluminum plate heat sink out from the welder I had to completely remove the fan assembly.  The plates are supported as well as electrically isolated by the fan assembly so be sure to go careful and not break anything.  When you put it back you need to be very careful that everything is floating in air and no uninsulated parts are touching any other metal parts.    This welder uses air gap to electrically isolate some of the components.

*** Special note ***  DO NOT CUT THE WIRES TO THE DIODES!   There is no extra wire, you MUST DE-SOLDER the wires, and then put them through the new diodes for soldering!   Yes this is not easy, but trust me, if you cut them you will not get it back together without having to replace more things and take the entire welder apart.

welder diode replacement

Replacing the Diodes on the Weld-Pak 100 is pretty straight forward in theory.  Desolder the wires from the old parts, solder on to the new ones.  You may have to squish the wires  while hot with needle nose pliers to get them through the new diodes, or wiggle them in while the solder is melted (using tools not fingers, melted solder is hot).  With all of the diodes replaced you are ready to carefully reassemble the diodes and heat sink plates.  I’m not sure one way is easier then the other. I put the aluminum plates mostly in place but not fully.  This way I could wiggle things into place and then tightened down the nuts.   BE SURE TO USE HEAT SINK PASTE ON THE DIODES when mounting to the Aluminum plate.  I did not have torque specs on the diode nuts, I just made them tightly snug.  Enough so I was sure they wouldn’t come loose, but not tight enough to break anything.

welder diode replacement Once you have it all back together, be sure to check that you have nothing touching that is not supposed to be touching. I used a little bit of Kapton film to insulate the transformer “wire” strip on the off chance that something came in contact with it in the future.   I loosely layed the cover back on and did some test welding.  The welder worked marvelously. I suspect perhaps my diode was iffy for a while as I was once again getting that nice sizzle sound from mig welding.  I realized on hearing it I had not heard that sound quite right for some time.   The bead of weld my weldpak 100 layed down was perfect.  I’ve since welded quite a bit with the repaired welder and everything seems to be great having replaced the rectifier diodes on my Lincoln Weld-Pak 100 Welder.

If you found this post useful, let me know, leave a comment. It’s nice to hear someone found my post useful.

 

 

Technical issues with Projectsbyzac.com

July 24, 2014 in Messages from Zac

I lost my desktop during a lightning storm a while ago.  With it I lost a lot of my setup for posting here. Thus the lack of new posts recently. I have many projects to post and update.

 

In the meantime,   my email on this site is not working.  Use the etzy links to mesg me through there if you are interested in buying toys from me for now.  I’ll take this post down when I’ve figured out all the email routing issues and have everything up and running.

 

I’m also not getting notifications of comments at this time. I’m sorry for the delay in responding to your comments and questions on my posts.

 

Thanks,

-Zac

Child Safe Natural Wood Finish – by weight this time

May 15, 2014 in Arts Crafts and other, Woodworking and Furniture

Kid safe wood toy finish

In my earlier post, I shared details of how I make the child safe wood finish made from purified beeswax and mineral oil that I use on my wooden creations meant for little ones.  In the past year I’ve had several emails asking for a more specific ratio of wax to oil.    As I needed to make more of this kid safe finish for my wooden toys available in my etsy shop, I used a scale and took notes while cooking up a batch.

1 pint of Mineral Oil  ~ 380g

Shaved purified Beeswax ~ 25g

Making it about 6% beeswax.  I hope this helps answer your questions if you want to make larger batches or be more precise in mixing up this nontoxic finish that works great on wooden toys you may be crafting.

 

***  Using hot oil and wax over an open flame can be dangerous.  If you have a gas stove, you should use extreme caution or a double boiler.  It’s not really any different then deep frying with oil or crisco on your stove top but I had a friend who suggested I put a warning up here about using oil on a stovetop and I think he is correct.  An alternative method is to use a double boiler with a jar as your container for the wax and oil.   As with all things, use your head, be smart when doing projects at home, and above all BE SAFE! 

 

 

Ducted fan designs, an early project sneak peek

April 11, 2014 in and cool stuff., RepRap 3D Printer

3d printed ducted rotor aircraft engine

This post is an early sneak peek at a project I have been working on in my spare time.  I showed a friend who stopped by and he told someone else an I was pestered to share pics and a video.  I have been experimenting with ducted fan thrust generation with a planned application.  As for what  that application is…  Well it is not ready for the world yet and I will let you use your imagination.

thrust generating ducted rotor     3d printed ducted fan thrust generator

Mostly eye candy at this stage of the game, I have tested 3 different rotor designs without getting into complex blade geometries to date. I have primarily been focused on printing rotors that have little wall clearance and hand finishing them to minimize the gap between the duct and rotor blade.  Research papers I have read shows that this area is critical to ducted fan efficiency and design.

ducted fan design 3d printed-9400

I am currently using a set up with a friction fit on a taper to lock the two halves together so I can get at the motor.  This little bad boy screams when she spools up.  In the shop it sounds like a mini jet engine starting up.   I am working on test platform speed a controller for it using an Arduino nano and components..

rotor design for ducted fan

You can see that this needs lots of cleaning and smoothing before final thrust measurements.  I plan to put it through an acetone bath treatment and then do a bit of hand finishing to smooth out the inner walls to reduce any drag from the 3d printed irregularities.  Eventually I’ll make a rotor balancing jig to fine tune the balance on the rotor.  Future iterations will likely have continually reduced rotor mass to decrease inertia.  I am testing behind a 1/4″ polycarbonate shield in case of catastrophic failure.

ducted fan design 3d printed-9401Here’s one with my hand to provide you with a sense of scale.  I will try to get a video of it spinning at moderate speed.  Without a speed controller I’m reluctant to limit test the high speed operation at this stage of development.  I will put a video up here later this weekend if I can find time.